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Figure 1. Forte is a 2D design tool that takes a user-driven approach of generative design: a user sketches a reading chair inspired by the painting
‘The Great Wave off Kanagawa’ (a) with specified loading scenario (red arrow forces, blue ground); Forte then generates structures (with real-time
feedback) to support the loads while resembling the user’s sketch (b), which can then be post-processed to create a 3D fabrication-ready model (cd).

ABSTRACT

Low-cost fabrication machines (e.g., 3D printers) offer the
promise of creating custom-designed objects by a range of
users. To maximize performance, generative design methods
such as topology optimization can automatically optimize prop-
erties of a design based on high-level specifications. Though
promising, such methods require people to map their design
ideas—often unintuitively—to a small number of mathematical
input parameters, and the relationship between those parame-
ters and a generated design is often unclear, making it difficult
to iterate a design. We present Forte, a sketch-based, real-time
interactive tool for people to directly express and iterate on
their designs via 2D topology optimization. Users can ask
the system to add structures, provide a variation with better
performance, or optimize internal material layouts. Users
can globally control how much to ‘deviate’ from the initial
sketch, or perform local suggestive editing, which interactively
prompts the system to update based on the new information.
Design sessions with 10 participants demonstrate that Forte
empowers designers to create and explore a range of optimized
designs with custom forms and styles.
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INTRODUCTION

Low-cost fabrication machines (e.g., 3D printers) offer the
promise of enabling people beyond highly trained engineers
and technicians to create a variety of objects with customized
geometry and functionality. As these machines continue to
develop, they no longer just serve as prototyping tools, but
gradually become the means to manufacture the final products
that will be deployed in real application scenarios [19, 26].

To fully realize the potential of these machines, users’ designs
need to address performance issues beyond geometric form
alone. For example, to create a robotic leg, in addition to
designing its shape, users also need to consider how much it
weighs and how it can support the weight of the robot’s body.

Traditionally, to solve such problems, generative design meth-
ods such as fopology optimization will automatically opti-
mize material distribution given the constraints of space, ma-
terial amount and other functional requirements [25]. Though
promising, such methods provide very few ways for users to
directly express or manipulate their designs; oft-times users
have to map their design ideas—often unintuitively—to mathe-
matical input parameters. Further, it is often assumed that a
CAD model has been designed prior to using such methods.
As a result, there is a lack of support for users’ ideation pro-
cess, and they have little direct control of the optimization’s
outcome [30], or ways to effectively iterate their designs.

To address this problem, prior work and existing tools have
been focusing on interactively specifying the input parameters
[3, 12], adding template-based textures to the optimized results
[20], or contextualizing them with CAD [24] or freeform
sketching [18]. However, none of this work lets users directly
control how a design should be generated and optimized.

To help address these issues, we present Forte, a sketch-based
2D design tool that takes a user-driven approach for people to



directly express and iterate on their ideas through generative
design with real-time visual feedback. Our main contribu-
tion is a set of user-driven optimization techniques that allow
people to express their design intents, resulting in a combi-
nation of structural performance and users’ desired styles.
Figure 1 shows an exemplar workflow: sketching a reading
chair inspired by the famous painting ‘The Great Wave off
Kanagawa’! with a specified loading scenario; Forte then gen-
erates structures to support the loads while resembling the
user’s sketch, which can then be post-processed using exter-
nal tools (e.g., Rhinoceros) to create a 3D fabrication-ready
model.

Specifically, with Forte, users can ask the system to add struc-
tures to the original sketch, provide a variation with better
performance, or generate optimized internal structures. Users
can globally adjust a ‘similarity’ slider, which controls how
much the system will ‘deviate’ from their initial input; they
can also locally edit the design by adding or erasing parts of
the sketch, which then interactively prompts the system to
update based on this new information. Meanwhile, a visualiza-
tion informs users of the performance trade-off as they iterate
on the design. Building on a fast topology optimization engine
[4], Forte enables rapid iteration and exploration, unlike most
existing practices that run the process in a non-interactive,
batch fashion (even for 2D designs).

We envision Forte will empower professionals who design
structures, such as industrial designers, mechanical engineers
and architects. To validate our approach, we held design ses-
sions with 10 participants. Our study demonstrates that Forte
empowers designers to create and explore a range of optimized
designs with custom forms and styles. While our current focus
is on a 2D design tool, we showcase three post-processing
techniques using external tools to turn a 2D design to a 3D
object: extrusion, warping and combination. We report stress
analysis on these 3D models under varying loading conditions
and finally demonstrate a series of fabricated examples.

RELATED WORK

Forte is a sketch-based interface that takes a user-driven ap-
proach to generatively suggest, modify and enhance users’
designs. Below we review three areas of related prior work.

Sketch-based Design and Modeling

Despite its limitation to 2D, sketching has been shown as a
powerful and expressive medium for design and modeling
[22]. For example, Teddy is a sketching interface that allows
users, with a few 2D strokes, to create free form 3D models
[16]. ILoveSketch and EverybodyLovesSketch are sketching
interfaces with a suite of interaction techniques to facilitate
the creation of 3D curves, using techniques such as automati-
cally rotating the camera to provide a better viewing angle for
sketching, and widgets to select specific sketching surfaces in
3D [5, 6]. Sketching can create functional objects even with-
out reconstructing a fully 3D shape: the SketchChair system
demonstrates the capability of sketching a chair by drawing
its cross section on a 2D canvas then extruding it to a full 3D
model [23].

1https ://en.wikipedia.org/wiki/The_Great_Wave_off_Kanagawa

Sketching is an appealing alternative to traditional CAD tools
for several reasons. Not only can it serve to create 3D models
based on a formulated design, it also supports the imagination,
ideation and exploration process. As pointed out by Gross
and Do, sketching “supports ambiguity, imprecision, and in-
cremental formalization of ideas as well as rapid exploration
of alternatives.” [13] Thus sketching by its nature embraces a
wide range of possibilities, alternatives and suggestions, which
has inspired us to take a user-driven approach to co-create de-
signs with users through sketching and optimization. Below
we review literature on user-driven suggestive interfaces that
informs our approach.

User-Driven Suggestive Interfaces

In a broader context, user-driven suggestive interfaces date
back to research in mixed-initiative interaction—an approach
of designing intelligent systems that allows users and systems
(e.g., an interface agent) to complementarily take on differ-
ent roles in a task, enabling an optimal collaboration with
each being able to “do what they do best” [11]. For exam-
ple, TRAINS-95 is a dialog-based planning system where a
railway manager describes the high-level routing goals while
the system detects potential problems (e.g., traffic, weather)
[11]. Horvitz summarizes principles of building such mixed-
initiative user interfaces, as illustrated in the LookOut system
that suggestively prompts and helps users to schedule events
from their emails [14]. More recently, mixed-initiative in-
teraction has been demonstrated in tools that help analysts
‘wrangle’ data into processable format by proactively suggest-
ing plausible transform operation based on user input [28].

In the domain of design tools, user-driven suggestive inter-
faces allow users to take the lead and drive the design task,
while the system observes, analyzes and suggests problems or
improvements to enhance the design. For example, Chateau
is a 3D sketching tool that predicts a user’s next drawings or
provide suggestions to complete drawings by observing user
input [15]. Tsang et al. use images similar to a target design to
guide the creation of 3D curves, and suggest relevant geometry
based on users’ input strokes [27]. Umetani et al. present a
tool for guided furniture design: as users edit their design, the
tool indicates structures that are non-durable and/or non-stable,
and further offers suggestions for solving these problem [28].

Compared to this prior work, Forte goes beyond producing
suggestions based on user input. Specifically, our tool en-
ables users to explore multiple ways of generating designs
while being able to customize how these designs are made
by specifying a global similarity value or performing local
suggestive editing. Further, Forte leverages a generative ap-
proach to produce a large space of design suggestions from
very simple initial user input. Below we review related work
in this generative design domain.

Generative Design

Generative design typically considers designing an object as
an optimization process that searches a space of design con-
figurations to find one which best meets an objective func-
tion. For example, topology optimization—one of the most
popular generative design approaches—iteratively computes
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Figure 2. Overview of Forte’s default tool bar: adjusting the amount of material for generating the structures (a); different layers for sketching and
specifying the loading scenario (b); drawing and erasing tools (c); controlling how the generated results are similar to the original sketch (d); and

selecting different design optimization methods (e).

material distribution that seeks to optimize performance, such
as minimizing the overall compliance of the object, given the
constraints of space, material amount, loads and boundary
conditions [7]. There have been research several professional
tools that support generative design, e.g., ANSYS [1], Shape
Generator in Autodesk Inventor [17], and Grasshopper scripts
in Rhinoceros [12].

Most of these tools only provide simple interactive widgets
for specifying basic inputs, such as pointing at where the
boundaries are and dragging to determine the amount of loads.
However, it is often difficult to understand how changing
these inputs will affect the final design, and hence hard to
iterate using these techniques. To achieve more interactivity,
one common obstacle is speed: users often have to wait for
hours or even days before coming back to see the results. To
overcome the speed limit, Andreassen et al. accelerate the
original 99-line program [25] with a speed improvement of
over two orders of magnitude [4]. This makes it possible for
topology optimization to run on mobile devices that allow
users to watch the optimization evolve in real time [3].

However, even with fast iteration, topology optimization still
remains as a ‘black box’, with users often having only very
indirect control of the optimization’s outcome [30]. To address
this issue, eifForm is a generative design tool that combines
a traditional modeling system with generation of structures
within a model [24]. Martinez et al. allow users to supply
exemplar visual patterns and obtain a design that is optimized
to be both structurally sound and aesthetically similar to the ex-
emplar [20]. DreamSketch enables users to sketch their ideas
(e.g., the seating of a glider) while leaving structural compo-
nents (e.g., connectors between seats, handles and wings) to
be generated by an optimization module [18].

While promising, most of this research, however, does not per-
mit users to directly manipulate or customize the optimization
process. Our work demonstrates how a user-driven approach
to generative design can give users direct control over the opti-
mization outcomes, and create results that uniquely combine
their ideas on aspects such as appearance with the system’s
perspectives on structures.

FORTE: USER-DRIVEN GENERATIVE DESIGN

In this section, we describe users’ interaction with Forte and its
key features for user-driven generative design, while leaving
the technical details for later in the next section. Specifically,
we will walk through a usage scenario: creating a 2D design
of a leg for a quadruped robot (Figure 3). The design goal is
three-fold: (i) in contact with the ground (Figure 3b), the leg
needs to be optimized for supporting the weight of the robot’s

body (Figure 3a), (ii) it needs to be lightweight to ensure the
overall efficiency of the robot, and (iii) its form also needs to
be customized with respect to other user-defined goals such as
aesthetics. Below we first go through some basic concepts and
terminologies and then demonstrate how Forte allows users to
jointly achieve these goals.

Basic Concepts and Terminologies

Generative design via topology optimization considers an ob-
ject as a distribution of a certain amount of material in order to
meet certain performance criteria. This paper focuses on struc-
tural performance, which is optimizing structures—with only
a limited amount of material available—to support a given
load. For instance, a robot leg should be designed to support
the weight of the robot’s body with a lightweight structure. In
Forte, a design consists of a sketch (considered below) and a
loading scenario, which include (i) where the expected loads
are and how large they are, and (ii) boundary conditions,
which is where the object is in contact with its environment
(e.g., arobot leg will touch the ground, as shown in Figure 3).
Based on this input, Forte will then generate structures via
different types of design optimization, i.e., distributing allo-
cated material in a structurally optimized way. Each type of
optimization is also constrained by a given amount of ma-
terial, which is typically measured by the percentage of the
entire design domain—the bounding box of the design object
(Figure 3c). For example, 30% material means the material
use% for the robot leg amounts to 30% the size of its bounding
box~.

#1 Sketching Designs and Loading Scenarios

With Forte, a user sketches a design idea as well as the loading
scenario. Each type of sketch is drawn in a different color
on its own layer (Figure 2b). This allows users to select
and focus on one particular layer at a time. Once a layer is

2We discuss later in the design sessions that participants found this
to be a problematic way of measuring material, as it seems hard to
get an intuitive estimate based on bounding boxes.
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Figure 3. From users’ sketch, Forte (right) generates lightweight struc-
tures to support loads, such as a robot leg (left) that needs to support the
robot’s weight using a specified amount of material.
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Figure 4. Forte’s three types of design optimization iteratively generate structures based on user’s sketch while providing them with real-time visual
feedback akin to an animation (a-e), the result of which can be controlled by a global ‘similarity’ value (f-h).

selected, it is pushed to the top with the rest of the layers set
to semi-transparent.

To start, a user simply selects the design layer and sketches a
curve representing the robot’s leg. With Forte, it suffices to
provide such a simple representation that succinctly expresses
the user’s high-level design intent, i.e., “I want the robot’s leg
to curve like this”. As the user sketches the robot leg, Forte
also shows the dimensions of the current sketch’s bounding
box to inform users of the size of their design. The default
scale is 20 mm per pixel, which can also be adjusted by the
user in the preference settings.

As a next step, the user would consider the loading scenario.

First, to create a load, the user switches to the load layer
(Figure 2), They can click on the sketch to indicate a single

loading point, or draw to specify a sequence of loading points.

As shown in Figure 5, as soon as these points are drawn (e.g.,
mouse released), an arrow is rendered, following the cursor
(e.g., where the mouse moves), and indicating the direction as
well as the amount of load, which is also shown at the end of
the arrow. A click confirms and pins down this load vector. To
specify a boundary condition, the user simply draws it on the
corresponding layer (Figure 3d).

In addition, Forte also supports a fourth type of layer that
allows users to lasso-select a clearance region that needs to
be kept clear, e.g., the space above a chair’s seat or around the
tip of a hook (Figure 6). This information proactively prevents
generating structures at places that will compromise the usage
of an object.

15kg

Figure 5. Interaction to specify a load.

#2 Design Optimization with Global Similarity Control
Once the user creates a sketch and specifies the loading sce-
nario, they can now explore three different ways the system
can generate structures by design optimization. Forte consid-
ers the generation of structures as a spectrum between users’
original idea and the system’s solution to the defined problem.
Users can navigate on this spectrum by adjusting a similarity
value from O to 1 (Figure 2d): conceptually, a low similar-
ity would allow the system to ‘deviate’ more from the user’s
initial sketch while a higher value will keep the generated
structures closer to what the user originally draws. Further,
Forte’s optimization algorithms run at an interactive rate, pro-
viding users with real-time visual feedback after each iteration,
as demonstrated in the accompanying video figure. Below we
illustrate Forte’s three new generative design optimizations
and how similarity allows users to have direct control of the
generated results.

Add structures To start, Forte can generate additional struc-
tures to strengthen the user’s original sketch. For example,
as shown in Figure 4(1a-1e), a major truss structure is added
parallel to the user-sketched robot leg as reinforcement.

The similarity value effectively controls how far away from
the original sketch these structures can be added. As the user
increases similarity, added structures will appear increasingly
closer to the original sketch and eventually become part of
it, equivalent to a thickening operation (Figure 4(1h)). How-
ever, note that the added structures’ position does not change
smoothly with the similarity value; rather it tends to ‘snap’ to
positions along the way that are structurally meaningful.

AU JJ

Figure 6. Lasso-selecting an area of clearance around the tip of the hook
(no structure generated here).
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Figure 8. Users can suggestively erase part of a generated result (ab), which prompts the system to update the optimization addressing the intent of
removing material; with this tool, users can also refine or smoothen a generated result (c).

Overall, ‘add structures’ is targeted at situations where users
only have a partial or incomplete design idea in mind and are
unsure whether and how they should add extra structures to
provide support for the loads.

Obtain variation Forte provides a second optimization al-
gorithm that can generate variations of the initial sketch. For
example, as shown in Figure 4(2a-2¢), Forte generates two
parallel interconnected trusses instead of one user-sketched
structure; however, the variation still bears resemblance to the
original sketch as it globally follows the curve path specified
by the user. As the user increases the similarity value, the
generated structures will follow the user’s sketch more closely
(Figure 7). ‘Obtain variation’ works best when users only have
a concept (e.g., a skeleton) of what the design should look like
without any structural details, in which case the system will
take the initial designs as ‘seeds’ and vary it with generated
structures.

Optimize within Forte can also consider the user’s sketch as
solid shapes (rather than skeletons) and optimize the internal
structures within. For example, as shown in Figure 4(3a-3e),
Forte reproduces the contour of the user-sketched robot leg
while filling in generated structures. By controlling similarity,
the user can effectively shrink or expand the contour, e.g.,
decreasing similarity results in a robot leg of the same curvy
shape but much thicker than the original sketch, given the
system more space to generate structures. ‘Optimize within’
serves well for cases where users already have a fully-designed
solid shape but want to re-design the interior structures.

For any of these design optimizations, users can adjust how
much material can be used in generating the design. For
example, as shown in Figure 7, reducing the material amount
often creates hollow structures with trusses, while a higher
value tends to thicken or fill up certain parts of the design.

As the user runs one of the three optimizations, Forte creates
and records a trial, and together displays a history of results
from all these trials. Selecting a trial not only shows the
resulted structures, but also updates the menu so that users
can see which of the three optimizations was used, how much
material was allocated and what similarity value was applied.

#3 Refining Optimization with Local Suggestive Edits
The similarity value allows users to control the optimization
outcome at a global level with respect to the entire design.
Complementarily, once a result is generated, users can also
perform fine local editing, which will prompt the system to
re-run the optimization, taking into account users’ underlying
intent of the edit. For example, if a user wants a thinner
tip of the robot leg, they can use the eraser tool (Figure 2c)
to scrub that area (Figure 8a, shadowed part). The system
immediately starts a new optimization and returns an updated
result with less material on the tip of the leg. Increasing the
erasing ‘power’ and applying it again finally sharpen the leg,
but results in a rough outline (Figure 8b). We can also use this
tool to smooth the optimized result (Figure 8c).

Similarly, the user can also use the pen tool (Figure 2c) to
draw on an optimization result, such as adding a truss to the
leg (Figure 9ab). The system will also re-run the optimization
and will attempt to generate some structures where the new
truss is drawn (Figure 9).

This technique is called suggestive editing, as users’ action do
not directly remove or add to the design; rather, it serves to
suggest their intent to the system, e.g., “I want less material
here”, or “I would like to add something there”. The next
round of structure generation will take into account such intent
and attempt to realize it through the optimization process.
However, intent cannot be realized if the removal or addition
of material compromises the structural integrity of the design
(e.g., removing the entire bottom part of the robot leg, making
it unable to stand on the ground).

#4 Informing Performance Trade-offs with Visualization
As users exploratively customize the optimization process, it is
important to inform them of the performance trade-offs. Forte

dE600¢

user edits

system optimizes

Figure 9. Users can suggestively add material to a generated result (cir-
cled strokes), which prompts the system to re-run the optimization and
attempt to add structures accordingly.



allows users to toggle a stress visualization (Figure 2) overlay-
ing each optimized result (Figure 7) . The heat map indicates
which part of a design is the weakest; it also allows users to
compare different designs’ performance and see how the stress
situations evolve as the design evolves. Users can also adjust
the safety factor: a higher value is equivalent to assuming more
weight, thus revealing more structurally problematic areas in
the design.

IMPLEMENTATION
In this section we describe technical details of Forte’s imple-
mentation.

#1 Sketching Designs and Loading Scenarios

Recall that users’ design input consists of a sketch within a de-
sign domain as well as loads, boundary conditions (Figure 3),
and/or clearance (Figure 6).

Given these input parameters, first the design domain is dis-
cretized into N = W x H square finite elements [31], each of
which (denoted as e) is assigned a density value x, € [0, 1].
The user’s intial sketch is discretized into a binary density
map on this domain with 1’s for elements overlapping with
the sketch and 0’s for the others. Similarly, loads, boundary
conditions and clearance are also converted to such density
maps. In addition, for loads each density=1 element is also
associated with a load vector indicating the amount of the load
as well as the direction.

#2 Design Optimizations with Global Similarity Control
The implementations of the three design optimization tech-
niques presented here are developed based on the 88-line
program [4], which uses a SIMP (Solid Isotropic Microstruc-
ture with Penalization) method for topology optimization. For
readers to better understand our approach, we first provide a
brief of overview and refer the reader to Andreassen et al. for
further details [4].

Overall, the process solves the following compliance optimiza-
tion problem:

N
min : c(x) = UTKU = Z E,(x.)ulkou,, (1)
* e=1
subject to:
VxX)/Vo<f; KU=F;, 0<x,<1
where c is the compliance of the design, which is computed
with U — the global displacement matrix, and K — the global
stiffness matrix determined by the stiffness of the material
as well as its distribution (or layout). The objective func-
tion is further broken down to the summation of compli-
ances across all elements: E, is the Young’s modulus of e
(Ee = Epin +x2(Eo — Epin)), Ko is the unit stiffness matrix
which together with E, determines the stiffness of element e;
u, is the displacement vector of e. Finally, U can be computed
from KU = F, where F is vector of forces (loads).

At each iteration, once ¢ is computed, x, is updated as follows:

max(0,x, —m), if x,By < max(0,x, —m)
= min(1,x,+m), if x,By > min(1,x,—m) (2)
x.BY otherwise

new
xﬁ

where m is a pre-set step for density changes, 1 = 1/2 is
a numerical damping coefficient, and B, = (—%) / (lgTV),
with A being a constraint factor to ensure the total volume

does not exceed Vj f—the allocated amount of material where
f is the percentage and Vj is the volume of the design domain.

This process represents the classic topology optimization ap-
proach that automates the generation of structures in a ‘black
box’. Below we describe our methods of extending it to a
user-driven approach, allowing the control of the optimization
results via a similarity value.

Add structures We initialize the design domain by assigning
each element the value of f (e.g., 15% of the bounding box
area). Through iterations the optimization will increase or
decrease this value for a given element, thus forming a global
structure. After each iteration, we add the intermediate gener-
ated structures to the user’s sketch, and take it as the input for
the next iteration. Specifically, now each element density is
computed as

— 1, if e € user sketch
xew —

e xnew
e

To control similarity, we perform a mass transport (cf. [10])
after each iteration before adding the intermediate results to
the user’s sketch. A mass transport considers two designs (e.g.,
user sketch vs. optimized result) as two ways of distributing
the same amount of mass (computed by summing up elements’
density), and transports the mass in between the two distri-
butions to obtain an interpolation. We use mass transport to
interpolate between the optimized result and the user sketch,
taking similarity as the weight of interpolation (0: user sketch
— 1: optimized result). This allows us to control how much
the design will be similar to the original sketch after adding
the optimized result.

3

otherwise

We implement the mass transport function by computing and
interpolating the barycenters of the two input designs as distri-
butions. We compute the distance field of the user sketch and
use it as the input distribution to the mass transport function.
This provides more fine-grained information at each element
(what is the distance of this element to the user sketch) beyond
a binary value (whether or not it is part of the user sketch).

Obtain variation Instead of f, we initialize the design do-
main with the user’s sketch, and then run topology optimiza-
tion, which will effectively ‘shift’ the material away from
user-specified locations to achieve a variation with optimized
material layout.

To support user control of similarity, we map the distance field
of the user’s sketch to the input design domain as
_ 1 wd(e)
xzmllal _ : COS( )S‘f (4)
T XNicos(Pghy 2

where xé”” fal ig the initial material density at element e, d is
the normalized distance field function, s is the user specified
similarity request, and the cos function raised to s produces
value close to 1 when d(e) is small (close to the user’s sketch)

and drops rapidly to O when shifting away. s controls how



quickly such a drop occurs. Thus a larger similarity value
will initialize the optimization (hence the result as well) more
closely to the user’s sketch, while a smaller value will loosen
the constraint by ‘diluting’ the user’s sketch, and produces a
result with wilder variation.

Optimize within We consider the user’s sketch as a ‘skele-
ton’. As a first step, we expand it using the distance field by
setting a new contour around the original sketch. We then run
the optimization only within the contour, as follows, at each
iteration,

xewsifd(e) < d.
xnew =, ifdcéd(e) <d.+t Q)
0 otherwise

d, is a distance field value used to define the new contour, and
t controls the thickness of the contour. We control similarity
by shifting ¢ towards or away from the user’s original sketch.

#3 Refining Optimization with Local Suggestive Edits
Forte enables users to interactively suggest adding to, or re-
moving from, parts of the optimization result, which then
prompts the system to re-run the optimization to produce a
version that matches the users’ intent, including the new edits.
Importantly, in such re-run, the system is initialized based on
the result from the previous run, rather than starting from the
original sketch.

As a user draws on, or erases, parts of a design on a
W x H domain, we create a mask M of the same dimensions
with each pixel’s value M, € [1 — Avemove, | + Agda], Aremove €
(0,1),Azqq > 0. Then in the optimization process, we update
element ¢ as

X = Mo ©)

In essence, M, indicates whether and how much a user would
want to add or remove material at this point. If a user performs
an erasing action, M, is set to be in [1 — Ayemove, 1), which will
dampen the to-erase elements’ density at each iteration; if a
user performs additional drawing, we integrate the addition
to the result as input for the re-run. As M, is now set to be in
(1,14 Aggq], it will amplify the to-add elements’ density at
each iteration. All unedited M,’s will be set to 1.

#4 Informing Performance Trade-offs with Visualization
We compute the von Mises stress of each optimized result
using Biyikli and To’s method [9], which is implemented as
an integral component of the optimization process. The values
in the stress distribution are then normalized by a material-
specific yield stress o, and visualized as a heat map. All our
examples and demonstrations in the design tool use a material
model based on an Extrusion Grade PLA [21]. The yield
stress is also divided by the user-specified safety factor, e.g.,
a 2x safety factor will result in the use of 0, /2, thus visually
revealing more potentially problematic area in the design.

Software and Hardware
The front end of Forte is written in JavaScript using jQuery? for
UI development. The back end consists of two components:

3 jQuery: https://jquery.com/

(i) the optimization techniques were written in MATLAB,
which is then compiled into a standalone service; and (ii) a
phython-based server that relays optimization requests and
input parameters from the front end to the MATLAB service,
and sends back the results. Everything runs on a MacBook
Pro (Retina, 15-inch, Early 2013) with a 2.4 GHz Intel Core i7
and 8 GB 1600 MHz DDR3 memory. In our demonstrations,
the front end runs on a Google Chrome web browser.

DESIGN SESSIONS

To validate Forte, we conducted informal, qualitative design
sessions with 10 participants. The objective of the study is
to let participants create their own designs using Forte’s user-
driven generative approach, and elicit their initial reaction
and feedback to the system to reveal existing problems and to
inform future improvements.

Participants We recruited 10 participants from our university
(1 female, aged 18-33). Two majored in interaction design,
three in architecture and the others in mechanical engineer-
ing. All participants reported to have sketching experience
and all had experience using CAD tools. Two reported to be
knowledgeable about topology optimization, four had passing
knowledge and the others had none.

Tasks & Procedure The design sessions took place in our
research lab and lasted between 1 and 1.5 hours for each
participant. To begin, participants were given a tutorial by
the experimenter on some basic understanding of topology
optimization, and how to use Forte by walking through a
concrete example of designing a bracket. Next, they were
asked to use Forte to create objects of their own design, as well
as coming up with loading scenarios. For each design, they
were free to choose any of the three optimization techniques
and run as many trials as they would like. Participants created
2-4 designs during the course of the study.

Throughout the design session, participants were asked to
think aloud as the experimenter took notes. they completed a
questionnaire to summarize their experience with Forte, e.g.,
what they like about the tool, what problems they encountered,
and what new features they would like to have in the future.

Feedback and Discussion

We analyzed the qualitative data using a method akin to the
Affinity Diagram approach [8]. We organized notes of partici-
pants’ comments and survey response to iteratively develop
meaningful and coherent themes.

Overall, participants responded positively to Forte’s user-
driven generative design approach: “I like how it can produce
interesting shapes, i.e., organic, asymmetric shapes which are
difficult/time-consuming to hand-draw” (P1); “... pretty nice
about making the idea of topology optimization accessible
to people” (P5); “computer generating structures from my
sketch is interesting; it might be the way computers can design
something like humans do in the future” (P10).

Optimization techniques Participants were able to learn
and recognize the difference between the three optimization
techniques. Further, some developed their own understanding
and preferences of the techniques. For example, P1 mentioned



that “*add structures’ lead to traditional shapes; ‘obtain vari-
ation’ is more creative.” P4 liked to use ‘add structures’ as
he wanted “the system to add something different from the
original drawing”. P9 extensively used ‘optimize within’ as
he wanted to keep the exact shape of the drawing and only
optimize what is inside.

Similarity control Participants had no trouble understanding
or using the similarity control. P1 commented that “... it
allows me to control how much imagination I need”. P4
liked that he could control how different the result will look
from the original design. P7 summarized the experience of
controlling similarity as having “design freedom”, and felt he
“can design anything and [Forte] will keep it to some extent
[after optimizations]”.

Real-time feedback Participants did not report any per-
ceived latency; they found it pleasant and useful to see how
the design evolved in real time: “[I] enjoy watching the shape
evolving” (P1), “Watching it grow and iterate is really nice—it
helps you visualize stresses and know where the strength needs
to be” (P2), “It helps a lot to see how things are branching out,
happening in the background” (P7).

Local suggestive editing We observed only three partici-
pants frequently used local suggestive editing. They all appre-
ciated this capability of refining the optimized design: “... very
easy to make quick changes on the fly to see how overall struc-
tures change” (P2); “... add and subtract material dynamically
which was very helpful” (P7). P10 would continuously use
this feature in a sequence of trials to add more reinforcement
based on the stress visualization.

Existing problems and suggested features Participants also
pointed out existing problems and suggested new features in
the tool. One main confusion is the amount of material: P2,
P4 and PS5 thought it was relative to the sketch, whereas it
was actually relative to the sketch’s bounding box. P5 also
suggested visualizing the actual size of allocated material to
give users a more concrete idea. Four participants (P2, P4, P7
and P10) asked how they can ‘transfer’ an optimized result
to the original drawing, or simply just be able run technique
B on technique A’s result. Such request points to an inter-
esting problem for future work, which is enabling users to
manage how an initial design branches out to a complex tree
structure. Finally, participants proposed other controls akin to
the similarity variable, e.g., keeping the design balanced (P1),
controlling the global maximum thickness of the generated
trusses (P5), and specifying symmetric structures (P6, P7), all
of which suggest fertile opportunities for future work.

Designs Created by Participants Figure 10 shows a series of
designs created by the participants. Overall, we observe two
recurring approaches of creating these designs. First, some
users would take a ‘form-first’ approach, whereby they started
by drawing their imagined form and then drove the system to
generate structures similar to the form. For example, ‘public
bench’ by P1 (Figure 10a) started with a single curve as a
shared sitting space, while the system generated structures
underneath to support it. ‘Cross-legged book case’ by P6 (Fig-
ure 10e) started with a form that almost looked like a Small
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Figure 10. Designs created by 10 participants using Forte.
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Seal Script* character in ancient Chinese. In contrast, other
users would take a ‘structure-first’ approach, starting with a
basic structure based on the object’s functionality; they ex-
plored which of the system’s generated structures can also
create interesting forms to the design. For example, ‘eagle
crane’ by P2 (Figure 10f) was initially drawn as a simple poly-
gon that provides the functionality of a crane. However, as the
system ‘morphed’ the input structure, it evolved into an eagle
head shaped design. ‘House’ by P8 also started with simple
geometry representing a two-story house, a loft and a patio,
which then evolved into two distinct design variations (Fig-
ure 10 g and h, using ‘obtain variation’ and ‘add structures’,
respectively).

4Small Seal Script. https://en.wikipedia.org/wiki/Small_Seal_
Script



We also observed different iteration strategies. Most users
iterated a design by playing with different similarity values
and amounts of material. For example, P3 used Forte to design
(the cross-section of) the GE Aircraft Engine Bracket (Fig-
ure 10c). His first three trials were simply trying out different
material-similarity combination to gauge variety of the under-
lying design space. Finally, quite a few users modified their
initial design based on the system’s generated structures. For
example, in designing a bike frame (Figure 10b), P2 noticed
that the system did not keep one of the trusses he drew but
instead created a different one. P2 then modified the initial
design to a ‘imitate’ the system’s approach. Participants also
tried to modify the system’s design. As mentioned above,
three participants were observed actively using the local edit-
ing techniques. For example, In designing a bow P7 used the
eraser tool to iteratively refine the shape of the bow updated
by the system ((Figure 10d).

Figure 10 shows other designs created by our participants.

POST-PROCESSING AND FABRICATED RESULTS

Forte enables users to formulate, express and optimize their
design in a 2D environment. To fabricate their designs into
3D artifacts, we describe three post-processing techniques
using external tools (e.g., the Rhinoceros® CAD system) for
fabrication and showcase some of the fabricated results.

Figure 11. Fabricated examples designed from Forte’s generated struc-
tures: legs for a quadruped robot (a); a bike seat (b); an S-shaped chair
(c); high heels (d); pet jumping platforms (e); a reading chair (f); and a
tea table (g).

Extrusion We can extrude a 2D design along a path to create a
3D object. First we convert a generated design from a bitmap
to a vector graphic, which can already be used in a laser cutter
to create planar objects, such as the legs for the quadruped
robot (Figure 11a). Further we can also import the vector
graphics to a 3D modeling tool for creating a 2D surface and
extruding it to a 3D object. We use this technique to create
a multi-functional reading chair that consists of an overhead
light, a reclined sitting area, and bookshelves (Figure 11f).
Extrusion is not limited to a perpendicular path: for example,

5https ://www.rhino3d.com/

it is possible to extrude the 2D chair profile in Figure 11c
along a circular path to create a bench.

Warping We can also warp a 2D design into a 3D surface. We
used this technique to design a pair of high heel shoes using
generated structures as the base (Figure 11d). We designed a
jumping platform for chinchillas by warping the cross-section
to form a rounder top (Figure 11e). We designed a bike seat
by warping a 2D generated pattern to the shape of a cushion
(Figure 11b).

Combination We can join multiple planar components made
from the 2D designs (e.g., fabricated using laser or CNC cut-
ting) to create 3D structures. For example, we designed a tea
table supported by two joined structures (Figure 11g).

To test the structural integrity of the 3D models produced in the
post-processing step, we performed Finite Element Analysis
(FEA) using Autodesk Inventor [17]. As shown in Figure 12,
we tested each model on a range of increasing loads—from
normal to overloading—and found consistent stress distribu-
tion across all the cases with high structural performance®. As
our current focus is on the 2D design tool, this test is only
based on our current examples (as well as specific types of
material chosen for running FEA). Further experiments are
required in order to validate the general process of converting
2D structural patterns to 3D objects manufactured in a wide
range of materials, which we leave as future work.

LIMITATIONS, TRADE-OFFS AND FUTURE WORK

Forte presents algorithmic approaches that add interactivity to
otherwise ‘batch’ optimizations. While these are focused on
a specific type of optimization, we believe that they do pro-
vide exemplars and starting points for development of similar
algorithms in other optimizations in the future.

Going from 2D to 3D The implementation of Forte is exten-
sible to 3D: on the front end, prior work has demonstrated
numerous techniques for enabling sketching in 3D [16, 5, 6];
on the back end, the optimization can also handle 3D cases
by adding a third dimension to the input parameters (design
domain, loads, boundary conditions, etc.) as well as the mate-
rial stiffness matrix. Perhaps the real challenge of going 3D is
maintaining real-time feedback and interactive iteration. Past
work has explored engineering solutions for handling 3D gen-
erative designs. For example, Aage et al. provide a topology
optimization implementation based on PETSc (Portable and
Extendable Toolkit for Scientific Computing), which enables
incredibly fine discretization, e.g., a (3D) design with 27.6
million design elements running on 24 CPUs (144 cores) only
requires 30-60s per iteration [2]. Building upon all this prior
work, our next step will develop and extend Forte to a fully
3D design tool.

Ambiguity and imprecision of sketching As mentioned in
Gross and Do’s work, sketching is a particularly appealing
medium for early ideation and design formation, as it embraces
ambiguity and imagination. As discussed in the design session,

5We define the range of loads based on the usage scenarios of each
design. The heatmap visualization is based on the maximum stress
amongst all five loads.
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Figure 12. All our fabricated examples from the sketches in Forte, to generated 2D designs, and to post-processed 3D models; we performed a Finite
Element Analysis on each 3D model based on the input loading scenario, which shows consistent stress distribution across a range of increasing loads.

this is also a strength of Forte, as it allowed participants to
use unique hand-drawn forms to generate structures. However,
as pointed out by a few participants, Forte lacks support for
more precise design, e.g., straight lines, smooth curves, and
symmetry. In the future versions of Forte, we would like to
add more controlled ways of specifying designs.

Generating and exploring a large space of examples Cur-
rently each of Forte’s optimized result is initiated and driven
by the users. While this gives users freedom to explore and
customize each optimization trial, it becomes a somewhat te-
dious process as the number of trial increases. In the future
we plan to explore ways to automatically generate a large de-
sign space of structures from a single user input. To realize
this, the challenge is two-fold: (i) how to infer and sample
more variables from one single user input in order to generate
more than one result; (ii) how to enable users to efficiently
navigate and filter a large number of results. Our future work
will explore solutions to tackle these two challenges.

Enabling more semantic controls of design optimization
On the input side, we are interested in enabling more semantic
controls of design optimization beyond the similarity value.
For example, in Yumer et al.’s work [29] they developed a num-
ber of semantic metrics for 3D models by having the crowd
perform pair-wise comparison on a large data set. In the fu-
ture, we want to let users label and quantify each optimization
result, e.g., ‘how organic is this bike frame’ and ‘how thin or
muscular is this chair’. By collecting these quantified labels,
we hope to map the space of the input parameters (e.g., amount
of material, similarity, clearance) to the semantic space of the
optimization outcome. This can potentially enable the ‘trans-
fer’ of design, e.g., applying a set of input parameters from
an organic-looking bike frame design to turn this chair into a
similar style.
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