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ABSTRACT 
This paper considers the design, construction, and example 
use of a new type of 3D printer which fabricates three-
dimensional objects from soft fibers (wool and wool blend 
yarn).  This printer allows the substantial advantages of 
additive manufacturing techniques (including rapid turn-
around prototyping of physical objects and support for high 
levels of customization and configuration) to be employed 
with a new class of material.  This material is a form of 
loose felt formed when fibers from an incoming feed of 
yarn are entangled with the fibers in layers below it.  The 
resulting objects recreate the geometric forms specified in 
the solid models which specify them, but are soft and 
flexible – somewhat reminiscent in character to hand 
knitted materials.  This extends 3D printing from typically 
hard and precise forms into a new set of forms which 
embody a different aesthetic of soft and imprecise objects, 
and provides a new capability for researchers to explore the 
use of this class of materials in interactive devices.  

Author Keywords 
Additive manufacturing; soft materials; computational 
crafts; interactive devices. 

ACM Classification Keywords 
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INTRODUCTION 
Additive manufacturing – most commonly referred to as 3D 
printing – offers exciting new possibilities for the creation 
of physical objects.  It allows object geometry to be 
specified (“drawn”) in purely virtual form on the computer, 
and then realized in physical form seemingly “at the push of 
a button”.  As a result, it enables both rapid prototyping of 
physical forms and new forms of mass customization not 
previously practical.  Further, some of these systems offer 
the ability to create new forms which are difficult or 
impossible to manufacture in other ways, opening up new 
possibilities for what can be manufactured.  Finally, recent 

advances have dramatically reduced the cost of this 
technology [7], making it accessible to a broad range of 
people and allowing the formation of a community of 
mostly non-professional makers who can share and 
customize object designs (see for example: 
http://thingiverse.com).   

In this paper we introduce a technique which extends the 
range of additive manufacturing to include a new class of 
material which we believe is interesting to the Human-
Computer Interaction (HCI) community.  Currently, nearly 
all additive manufacturing has focused on the production of 
precise forms using hard materials such as plastic and 
metal.  (A notable exception being printers capable of very 
precise manufacture of flexible materials similar to silicon 
rubber, such as the Objet Connex printer).  In the work 
presented here we consider a technique to manufacture 
objects made from needle felted yarn (see Figure 1).  These 
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Figure 1. A 3D Printed Teddy Bear.  Solid model (top left),
printing in progress (top right) and result (bottom). 
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objects are soft and flexible – with a feel and form 
somewhat analogous to hand knitted or crocheted objects.  
This material moves away from an aesthetic of very precise 
shapes and hard lines, towards the more varied texture and 
feel of hand crafted fiber arts.  However, at the same time 
we retain the ability to create designs using solid modeling 
software and fabricate them on demand, which is central to 
the advantages of additive manufacturing.  This opens up 
new possibilities in the creation of interactive objects which 
are soft and flexible, and so more suitable to be worn or 
simply “held close”.  Figure 1, shows one such example in 
the form of a printed Teddy Bear.   

In the next section we will very briefly consider related 
work.  We will then consider the details of how our 
prototype printer is constructed and used.  Then we will 
explore several techniques for going beyond creating of 
simple soft solid forms, considering how hard objects (such 
as electronics) might be embedded inside prints, how the 
connection between hard and soft materials can be 
managed, and how we might systematically manipulate the 
stiffness of objects.  The design and construction of an 
example object using these techniques will be considered, 
then limitations and prospects for future will be discussed. 

RELATED WORK 
Substantial prior work has been done on embedding 
electronics in fabric and fabric-based objects (most notably 
clothing).  This has in turn been an enabler for new types of 
interactive devices and new styles of interaction.  We will 
not attempt to review this large literature here, but can point 
to several important themes and a few exemplars of each.  
These include: the development of techniques for creation 
of circuits (and more specifically for creating sensors) on 
and with fabric [2,10,3,5], examining new applications that 
are enabled by an ability to work with a soft, flexible, or 
otherwise more “personal” forms for electronic device [1, 
12], and the personal and community effects engendered by 
extending electronic making into new domains, looking for 
example at the relationship of this work to crafts and the 
DIY movement [6,13,10].   

More generally, new technologies for personal fabrication 
have begun to open up new possibilities for exploring the 
space of interactive devices.  Recent work has looked at 
making use of new materials for 3D printed input and 
output components (see for example [18]), new fabrication 
techniques using existing technology (such as the 
innovative use of laser cutting in [9]), as well as new 
classes of fabrication (such as the hybrid manual/automated 
techniques introduced in [20]).  Work has also considered 
better systems and tools for supporting existing fabrication 
processes for prototyping of devices (see e.g., [14,15]). 

Another emerging area of considerable overlap with the 
work presented here is soft robotics (see recent surveys of 
this very large area in [11, 17]).  While some of this work is 
motivated by a desire to more easily interact with people, 
much of this work is also concerned with the detailed 

mechanics of control and manipulation of soft bodies as 
well as the details of sensing in this domain.  Soft sensors in 
particular are of considerable interest for HCI (see for 
example [16, 19]).  These developments all form important 
prerequisites for progress in this area.   

CONSTRUCTION OF A FELTING PRINTER 
Felt is a textile which is created by entangling and 
compressing sheets of fibers (rather than weaving them).  
The printing technique introduced in this paper involves a 
process of needle felting where a barbed needle (see Figure 
2) is repeatedly passed through a body of fibers in order to 
draw fibers down into layers below and entangle them 
there.  Barbed needles are used for this purpose in the 
commercial manufacture of felt (which is normally done in 
a wet environment such as soapy water, which we do not 
use) as well as the craft of needle felting.  Needle felting 
craft objects include fibrous decorative materials such as 
felt, yarn, and loose fiber roving, joined onto (i.e., 
entangled over and through) loosely woven or knitted 
clothing (such as a sweater).  In a more closely related, but 
less structured form, needle felting can also used to 
construct full 3D forms from fiber (see for example: 
http://www.stephaniemetz.com/portfoliocurrent.html).   

In the process introduced here we produce three-
dimensional felted forms in a layered fashion.  Like many 
other forms of 3D printing we form solid objects by 
creating a series of thin layers of material, each representing 
a horizontal slice of the final geometry.  By working from 
the bottom of the object up, and bonding each layer of 
material together (in this case by needle felting) a complete 
3D object with fairly arbitrary geometry can be formed.  
For each layer in this process we place fiber, in the form of 
yarn, along a winding 2D path which fills the layer.  As we 
deposit this yarn along the printing path, we bond it to the 
layers below by repeatedly piercing it with a felting needle 
– dragging down individual fibers from the yarn into the 
layer(s) below and entangling them there.   

To accomplish this process mechanically we use a new 
custom felting print head (described below; see Figure 3) 
attached to a precision 3D motion platform.  The motion 
platform is driven by stepper motors and control electronics 
which respond to the same “G-Code” commands used for 
RepRap 3D printers [7] and very similar to those used by 
many CNC machines [8].  Specifically the open hardware 
Arduino-based RAMPS control and drive electronics (see 
http://reprap.org/wiki/RAMPS_1.4) and open source 
Repetier firmware (see http://repetier.com) are used 
(unmodified).   

Figure 2. The felting needle used in this work is triangular 
with barbs in the form of notches placed approximately 

2mm apart around the needle.  
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Tensioning which varies during the felting process is 
accomplished by opening the feed lock before the printer is 
moved to the next step location, and closing it after the first 
punch of the needle, leaving it closed for the remaining 
punches which serve to “felt in” the yarn at that spot.  In 
addition, we regulate the amount of yarn drawn in by the 
first punch by making it a bit shorter than later punches 
(pushing the first needle barb 6mm below the foot as 
opposed to 10mm for later punches). 

The printing paths produced from a 3D model by the slicing 
software are made up of a series of “G-Code” commands 
for linear movements (originally targeting a conventional 
FDM 3D printer), some of which also contain commands 
for extruding plastic, and some of which do not.  We use a 
custom program to translate these commands into modified 
G-Codes appropriate to drive our machine.  In particular, 
non-extruding moves (and other commands) are tracked, 
but passed on to the movement controller as is, while each 
extruding linear moves are translated into a series of felting 
steps.  We use a step size as close to our target step size 
(currently 2mm) as possible and still produce an integral 
number of steps per line.  At each step we do the following: 

1. Move to the step location  
2. Initiate the punch sequence with control line pulse 

Performed by independent print head controller: 
2.1. Perform an initial (short) needle punch  
2.2. Close the feed lock 
2.3. Perform N (currently 3) full length felting punches 
2.4. Open the feed lock 

3. Wait for the punch sequence to complete 

Parts 1,2, and 3 are performed by the unmodified control 
board (and firmware) of the original 3D printer.  While 
parts 2.1-2.4 are performed by custom drive electronics 
(and firmware) for the print head when triggered by a pulse 
on a control line connecting the two controllers.  (The 
Repetier firmware we used provides G-code commands for 
setting the state of unused I/O pins on underlying the 
Arduino compatible micro-controller it runs on, so this 
pulse can be initiated through G-Codes alone without 
modification to the original printer firmware.) 

As currently configured, a punch sequence takes just under 
1 second (including 100msec to open or close the feed lock 
and 195msec for each full length punch).  Moves between 
felting steps can be performed quickly, resulting in a 
printing rate of approximately 2mm per second.   

One important limitation of the current prototype print head 
is that it does not have a mechanism for cutting the yarn.  
Feeding extra yarn during non-felting moves often just 
requires a bit of additional “clean up” after printing (most 
extra yarn ends up interior to the object and is just invisibly 
felted over).  However, in some cases previously felted yarn 
can be “pulled up” during a long move.  So to temporarily 
compensate for this missing feature of our prototype, our G-
Code translation software can optionally insert pauses 

before long moves with a prompt to manually cut the yarn.  
We intend to introduce an automatic cutter based on servo 
actuated scissor blades in our next round of prototype 
development. 

Material and Printing Details 
Needle felting most typically uses unspun fibers (roving) 
rather than yarn because the spinning process makes the 
fibers slightly less available for entanglement (they are 
already partially entangled with other fibers in the strand).  
However, yarn has the significant advantage that it can be 
easily spooled and fed through the printing mechanism in a 
controlled and consistent fashion.  Nonetheless it may be 
useful in future work to consider mechanisms which can 
handle pencil roving rather than yarn. 

Yarn used for the printer must be suitable for felting.  Yarn 
made from animal hair, most notably wool, is the most 
suitable material due to the micro-structure of its fiber 
surfaces.  However we have also had good success with 
wool blends which include at least 50% wool.  Synthetic 
yarns not blended with wool (such as acrylic) appear to be 
unsuitable for felting because the very smooth micro-
surfaces of the fibers do not entangle well.  We also found 
cotton fibers to be wholly unsuitable and “superwash” wool 
(which has been treated to improve washablity) does not 
perform well.  Overall we found that less tightly spun yarns 
with a lot of loose fibers – what might be described simply 
as “fuzzy” – produced the best results.  However, the 
difference between the best and worst results for a 
particular fiber type were not found to be as dramatic as 
differences in fiber type – specifically all (non 
“superwash”) wool and most wool blend yarn we tried 
felted quite well. 

Because yarn is soft, inherently variable, and is compressed 
during printing, accurately measuring of the diameter of 
yarn to establish the proper thickness of layers is a bit 
difficult.  Most of the yarn we experimented with was 
approximately 2mm in diameter (as measured by calipers) 
and because printed layers are easily compressed this 
“round number” worked well for most prints.  However, for 
tall prints (over about 50mm) sub-millimeter inaccuracy in 
the layer height is compounded.  We found it was necessary 
to empirically determine the best layer height for these tall 
prints.  For example we determined that the yarn we used 
most often printed best in tall prints using a layer height of 
2.25mm instead of the 2mm.  

Due to the comparatively large thickness of the material 
being depositing (e.g., 2mm in comparison to 0.5-0.2mm or 
less for FDM printing) dimensional accuracy is inherently 
more limited than in other forms of 3D printing.  In addition 
to this inherent limitation we also found that the flexibility 
and compressibility of the material also contributed to 
inaccuracies in the result.  For example, we found most 
prints tended to push ~2-4mm outward from the nominal 
edge of the specified geometric model due to the felting 
process in layers above somewhat “squashing” the layers 
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below.  Further, this type of effect does not occur evenly.  
This results in an overall randomness of the result which 
makes its character much more like hand knitting and much 
less like tightly woven manufactured cloth (or even 
manufactured felt).  While this change of character can be 
seen as one of the interesting and desirable properties of the 
result, it also limits the feature size of things that can be 
printed with this material.  For example, the solid model for 
the test bear shown in Figure 1 contains features for a small 
nose and eyes (8mm and 4mm wide respectively).  
However, these end up fairly indistinct in the final result. 

Due to the flexibility of the material we were initially 
concerned that we would be unable to print taller objects.  
However, in our tests we found that we could successfully 
print objects up to the limit of our initial prototype machine 
(75mm tall) as long as they were not too narrow.  For 
example we printed a 50mm diam x 75mm tall cylinder 
without much difficulty (once an accurate layer height was 
determined).  However, for a similar 30mm cylinder we 
encountered some distortions at higher layers from the 
“wobble”, and large problems for a 20mm cylinder.   

As in several other types of 3D printing, the geometry of 
printed objects cannot be completely arbitrary.  In 
particular, geometry containing overhangs, where part of a 
layer has little or no material in the layer below it, can be 
problematical since at the limit the layer can be “printing 
over thin air”.  This same limitation applies to e.g., FDM 
printing.  For FDM printing this can be overcome by 
printing extra sacrificial support material which is removed 
in a post-processing step.  Even without support material, 
overhangs of up to 45° can typically be supported (45° is 
the theoretical tipping point at which the center of gravity 
of an overhanging flat object is outside the profile of an 
identical object below it).  In fact in FDM printing 
overhangs of a bit more than 45° can sometimes be printed 
without support due the adhesion of the material when it is 
hot.   

While the felting printer can also print extra material to 
provide support for overhanging elements of the geometry, 
it can be a tricky to determine exactly what material should 
be removed and remove it without damage to the layers 
above.  To determine how much overhang can be tolerated 
without support, we performed tests on objects with 
increasing overhang angles.  We found that as the overhang 
increased deeper layers would get pushed out farther from 
their intended locations resulting in a gradual degradation 
of the shape away from its intended geometry.  However, 
this gradual degradation also allowed overhang angles up to 
55° in our tests to print without failure (which usually 
manifests itself as a tangle of unfelted yarn).   

Post-Processing 
After printing is complete a number of post-processing 
steps may be performed.  The first of these is a set of 
cleanup steps.  Since our prototype printer does not yet 
contain a yarn cutter, extra lengths of yarn will be left with 

the model in places where the print head moved from place 
to place without felting down the yarn.  Many of these will 
occur inside the solid model.  However, the remainder can 
be easily removed with scissors.  In addition, the 
imprecision of the printing process (partially resulting from 
lower layers in some cases being “squashed” or pushed 
aside somewhat by layers above them) can sometime leave 
the outside perimeters of layers with small loops or bulges.  
If desired, these can be “tidied up” by trimming with 
scissors and/or a bit of hand needle felting work to bind 
stray yarn more tightly back into the body of the print.  
Note that these cleanup steps are very much analogous to 
the kind of trimming and sanding work that is very often 
needed to clean up FDM printed plastic models on typical 
lower-end printers.   

In addition to cleanup steps it is also possible to increase 
the tightness of fiber binding within the resulting felt and 
the overall density of printed objects by agitating the 
objects in hot water (typically along with a surfactant such 
as mild soap).  Our experiments show that this makes the 
resulting objects considerably firmer.  However, the wool 
fibers making up the object also shrink changing the 
dimensions of the object.  Considerably more 
experimentation is needed to properly characterize these 
effects and of course this post-processing may be 
problematical if embedded electronics are used.  

FUNCTIONAL AND STRUCTURAL COMPONENTS 
Printing of custom solid soft objects provides an interesting 
new capability in and of itself.  However, to take full 
advantage of this capability for innovative interactive 
devices, we would like to integrate additional electronic and 
mechanical components and may also want to manipulate 
the structural properties of the resulting object.  In this 
section we consider some of these aspects.  Considerable e-
textiles work has been done which shows e.g., how to 
integrate electronic components with fabric objects.  Much 
of this work is applicable in this domain as well and can 
largely be reused.  Consequently, we will not cover it in 
detail here.  For example, it should be easy to stitch in areas 
of conductive thread to create capacitive touch sensors [5].  
In this section, we will instead concentrate more on aspects 
which are mostly unique to the nature of this work such as 
its 3D form. 

Cavities and Embedding 
To explore the full potential of soft printed objects as a 
form factor for interactive devices we would like to embed 
electronic components for sensing and display, as well as 
motors and mechanisms for actuation within the material.  
Unfortunately, many of the components we might like to 
embed would not seem to be very compatible with repeated 
strikes from a very sharp motor-driven needle.  For 
example, it would seem a normal printed circuit board 
would likely bend or break the needle (or at least forcibly 
alter its z-position and ruin subsequent felting punches), 
while the needle might puncture and damage softer 
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components such as typical flexible circuit materials and 
some conductors.   

To address this challenge we have developed several 
different embedding mechanisms which can be used in 
different circumstances.  In this section we consider five 
methods: Sew in/on later, Deep pocket embedding, Direct 
felt-over, Capped pockets, and Nylon braid tunnels. 

The simplest solution, and one used by most previous 
fabric-based devices, is to simply sew components onto or 
into the body of the felted object after it has been 
constructed.  For example circuit boards and other 
components can be sewn on the outside of the object, or 
under a sewn on flap.  Also because the material is soft and 
fibrous, a sewing or yarn needle can be used to pull 
conductive thread through a considerable depth of material 
(limited only by the length of the needle), or from the 
surface of the material to an interior cavity (see below).  
This would allow, for example, components such as LEDs 
sewn onto the surface, to be easily connected to interior 
components such as a micro-controller.  In fact, due to the 
pioneering fabric-based interface work of the past, a range 
of electronic components specifically designed for sew on 
use are currently available commercially (see for example 
the over 100 E-Textile products listed for sale at: 
https://www.sparkfun.com/categories/204).   

Since both the exterior and interior geometry of an object 
can be fairly arbitrary, it is also possible to create interior 
cavities or pockets to hold components.  With this 
approach, an interior void is specified in the object 
geometry.  When the print reaches some number of layers 
past the bottom of this void, it can be paused.  Then a 
component can be placed in the partial or complete pocket, 
and the print continued, forming layers over the top of the 
pocket.   

However, the nature of the printing process constrains this 
approach.  In particular, to create good felted bonds 
between layers our experimentation has shown that the 
felting needle should generally penetrate 15mm into the 
material (this includes 5mm of needle which has no barbs 
and approximately 5 barbs on the next 10mm of the needle 
shaft).  This means that for hard or vulnerable components 
(such as printed circuit boards) there must be a 15mm gap 
between the top of the component and the top of the pocket.  
Since we generally cannot “print in mid-air” over large 
unsupported areas, we accomplish this by placing a small 
piece of foam or other “stuffing material” (such as polyester 
fibers or even simply yarn) in the 15mm void above the 
embedded component.  Printed layers at the top of the deep 
pocket then felt into this support material and the needle 
does not strike the embedded component.   

This deep pocket approach to embedding is suitable for 
large prints which can contain a ~20mm tall interior void.  
However, for thin objects this is unlikely to be a viable 
option.  For these cases we can consider several other 
approaches.   

First, based on our experiments we have determined that it 
is possible to simply felt over a few more types of objects 
than is immediately apparent.  For thin wires (stranded 
insulated wire, solid insulated or bare wire, as well as 
typical through-hole component leads up to approximately 
1mm in diameter) our experiments show that they can be 
simply placed on top of a layer in a paused print, held 
loosely in place by hand or with pins, and simply felted 
over.  Our observations show that when the thin needle 
strikes these objects they simply shift slightly to one side to 
allow it to pass (although in a few cases the needle bent the 
wire slightly rather than simply shifting it).  Similar results 
were also obtained with conductive thread.  We did not see 
thread breakage in our tests.  We also have not observed 
spurious conductivity between felted in conductive threads 
crossing at right angles and separated by a layer of felted 
yarn.  However, we do not feel our tests at present are 
exhaustive enough to determine that this will always avoid 
shorts.   

In a “torture test” we also successfully felted over a 2.5mm 
wide nylon wire tie.  In this case the needle hit the wire tie 
on every pass across it and was unable to shift it out of the 
way in most cases.  However, due to the flexibility of the 
wire tie itself and the compressibility of the 50mm foam 
pad on the bed of the printer, the material was depressed 
enough to avoid breaking the needle or causing its motor to 
skip steps, and the print continued successfully.  This 
indicates that the direct felt-over approach may be more 
viable than immediately obvious.  However, more testing is 
needed to define the range of its applicability.   

For cases where direct felting-over is not viable, we have 
developed a more involved capped pocket method which 
allows objects to be placed in pockets no deeper than the 
embedded object so long as the pocket can be placed within 
a few printing layers of the top of the print (or an 
indentation at the top of the print is acceptable).  To do this, 
we first separately print a thin cap consisting of a felt base 
with one or two layers of yarn felted on top of it.  The felt is 
cut with a ~4mm “lip” sticking out past the printed yarn 
layers. In the main object we use a pocket geometry 
illustrated in the cutaway view of Figure 5 (top).  The print 
is stopped one layer above the top of the pocket, the 
embedded object is inserted, the previously printed cap 
(with its felt base) is placed on top, and the print is 
continued.  The remaining layers then felt through the cap 
lip and abut the cap yarn layers.  This results in a surface 
covered with felted yarn as shown at the bottom of Figure 
5, but is formed in a way which never has the needle 
intrude into the embedded object’s pocket. 

A final method for embedding objects can be used if small 
embeddings away from the print surface are needed and 
objects can be inserted from the side after printing, or when 
long passages are needed (e.g., for multiple wires or even 
thick cables). This method makes use of flexible nylon 
braided tubes which are sold for use as wire bundle covers.  
In this case, the print is paused, and the nylon tube is placed 
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directly mate with the mounting holes and/or other 
geometry of the specific part being attached or embedded.  
We also have flexibility in how much mesh surface is used 
to absorb and distribute forces and can tailor that surface 
area in the direction(s) we expect forces from the hard/soft 
interface to be applied from.   

Manipulating Stiffness  
A final area we explored was manipulating the stiffness of 
printed objects.  This is useful for example, for creating 
joints within articulated characters or foldable devices.  
There we would like the joint to be more flexible than the 
material adjacent to it so that bending occurs at the joint 
rather than elsewhere.   

For this purpose we looked at three techniques.  First we 
can increase the flexibility of the resulting printed object by 
leaving small gaps in the geometric model used to create it.  
This causes the creation of small voids which bends can 
collapse into.   

To increase stiffness we looked at two techniques.  In the 
first we placed a layer of low stretch fabric within the print.  
This fabric was felted into the body of the print, with fibers 
from the layer above the fabric passing through it to felt 
with the layer below.   

In our experiments we used a thin nylon organza fabric – 
essentially a very thin woven nylon mesh.  The properties 
of this particular fabric cause it to be both amenable to 
felting fibers through, and exhibit low stretch.  However, 
many other fabrics could likely be used for this purpose. 

Since the fabric was less stretchable than the felt that was 
formed through it, it resisted bending somewhat more than 
the surrounding felt, thus somewhat increasing the stiffness 
of the area it was embedded in.  Additional layers of non-
stretch fabric can be embedded to increase stiffness.  This 
allows us to create a range of different stiffnesses to meet 
different needs.  It also allows the stiffness of an object to 
shift incrementally across an area rather than changing at a 
single point from most to least stiff.    

However, we found that this sort of fabric stiffener could 
only increase stiffness to a low to moderate degree.  To 
achieve more stiffness (and make it easier to place and 
tailor stiffness at modeling time) we also experimented with 

the creation of custom stiffening sheets.  In this technique 
we again used nylon mesh embedded in 3D printed plastic.   

In this case we printed a series of thin lines bonded above 
and below the mesh as shown in Figure 6 (right).  This 
material is constructed from a solid model with the same 
mesh embedding procedure described above.  These lines 
were designed to be narrow enough (and widely spaced 
enough) that they could be easily felted over – like other 
narrow objects we tried, the lines appear to shift slightly 
rather than break if they happen to be struck by the needle.  
Sheets of this type can then be felted into the body of a 
print to significantly increase stiffness where desired.  Like 
the hard/soft material interface described above, the use of 
an embedded mesh allows forces to be distributed across an 
area, making the presence of a stiff material inside a soft 
one less problematic.  Because the stiffeners are 3D printed, 
the exact placement of stiff versus flexible regions can be 
easily specified as part of the solid model for the stiffening 
plastic.  Further the exact stiffness can be varied by leaving 
alternating gaps in the lines and/or manipulating the space 
between them.  This allows us to very finely manipulate the 
details of stiffness properties and thus to create objects 
which can be highly tailored to their intended use.  For 
example objects on the outside of clothing can be made to 
bend where they need to for comfort, while being more 
ridged in other locations.   

For our experiments with custom stiffeners we used the 
same nylon mesh as our hard/soft material interfaces.  Like 
those tests we used two 0.4mm layers below the mesh, a 
0.4mm gap for the mesh itself and two layers above the 
mesh.  We deposited the thinnest lines available on the 
printer (~0.4mm wide).   

As is evident in Figure 6 (right), the resulting print typically 
contained some flaws. These were caused in two ways.  
First the very narrow lines did not respond to unevenness in 
the mesh well in a few places.  In particular, the extruded 
plastic bead did not have plastic next to it which would help 
to hold it closer to its intended position when irregularities 
occurred.  Second, the very narrow separated lines stuck 
nearly as well to the printer bed as to the mesh and layer 
above, and so in a few spots the layers delaminated when 
they were removed from the printer. Also, although 
inconclusive, our experiments raised questions about the 
long term robustness of the printed stiffeners – whether the 
thin lines might break over time and hence decrease 
stiffness. Our tests were done with PLA thermoplastic.  
However, it is likely that nylon would be a more robust 
material to deposit for this purpose.   

EXAMPLE USE 
As an illustration of how the techniques described above 
can be brought together to create functional interactive 
objects, this section describes the design and construction 
of a partial prototype for an articulated soft object.  In 
particular we consider an internally articulated arm which 
could be part of an interactive teddy bear.  This example 

    
Figure 6. (Left) Nylon mesh interface layer embedded in a 3D 

printed hard plastic grommet (with 5mm mounting hole).  
The nylon mesh can then later be embedded in a felting print 

to provide a smooth distribution of forces applied to the 
grommet across the many fibers felted through the mesh. 

(Right) Custom 3D printed stiffening sheet. 
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most important limitation of this technique is the physical 
robustness of the resulting felted objects. These objects 
exhibit reasonable strength for forces applied laterally to 
layers. However, they are less robust to forces 
perpendicular to layers, tending to pull the layers apart. To 
improve robustness in that direction in future work we may 
consider injecting very small amounts of a flexible adhesive 
in conjunction with the felting process in order to more 
permanently bind felted fibers between layers.  However, 
considerable experimentation will be needed to find an 
appropriate adhesive and application process.  In particular, 
a balance will need to be struck between adhesion and 
resulting stiffness if the soft character of the results are to 
be maintained.   

Although imprecision is in some sense a desired part of our 
result, another limitation of the technique is that it may be 
too imprecise for some uses. Finally, we feel that 
considerably more exploration is needed in designing new 
types of mechanisms, structures, and electronic sensors, 
within, around, and with this new material.   
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